Global Industrial Robots Market Outlook Report: Latest Trends and Growth Opportunities by Region

Published On: Feb, 2025
|
Pages: 144

"The Global Industrial Robots Market Size was valued at USD 23.7 billion in 2024 and is projected to reach USD 26.5 billion in 2025. Worldwide sales of Industrial Robots are expected to grow at a significant CAGR of 13.8%, reaching USD 87.3 billion by the end of the forecast period in 2034."

Industrial Robots Market Overview

The industrial robots market has experienced remarkable growth over the past decade, driven by the increasing automation of manufacturing processes across various industries. Industrial robots are automated, programmable machines capable of performing tasks such as welding, painting, assembly, and material handling with high precision and speed. The global industrial robots market was valued at approximately USD 45 billion in 2023 and is expected to reach USD 75 billion by 2030, growing at a compound annual growth rate (CAGR) of 7.5% during the forecast period. This growth is largely fueled by the rising demand for automation in the automotive, electronics, and metal industries, as well as the ongoing advancements in robotics technology.

Geographically, Asia-Pacific holds the largest market share, driven by the significant adoption of industrial robots in countries like China, Japan, and South Korea. These countries are major manufacturing hubs with a strong emphasis on automation to enhance productivity and maintain competitive advantages. North America and Europe are also key markets, with the automotive industry being a major contributor to the demand for industrial robots. The increasing need for efficient production processes, improved product quality, and reduced operational costs are primary factors driving the adoption of industrial robots in these regions. This market overview aims to provide a comprehensive understanding of the current trends, drivers, and challenges shaping the industrial robots market.

Latest Trends

One of the latest trends in the industrial robots market is the integration of artificial intelligence (AI) and machine learning (ML) technologies. These advancements enable robots to perform more complex tasks with greater accuracy and adaptability. AI-powered robots can learn from their environment, improve their performance over time, and make real-time decisions, enhancing overall productivity. Another significant trend is the rise of collaborative robots, or cobots, which are designed to work alongside human workers in a shared workspace. Cobots are equipped with advanced sensors and safety features that allow them to interact safely with humans, making them suitable for tasks that require a combination of human dexterity and robotic precision.

Drivers

The primary drivers of the industrial robots market include the increasing need for automation to boost productivity and efficiency in manufacturing processes. The automotive industry, in particular, has been a major adopter of industrial robots for tasks such as welding, assembly, and painting. Additionally, the growing demand for consumer electronics has led to the increased use of robots in the electronics industry for tasks like PCB assembly and component insertion. The ongoing advancements in robotics technology, such as the development of more sophisticated sensors, improved AI algorithms, and enhanced connectivity, are also driving the market growth. Furthermore, the rising labor costs and the need for consistent product quality are encouraging manufacturers to invest in robotic automation.

Market Challenges

Despite the positive growth outlook, the industrial robots market faces several challenges. One of the main challenges is the high initial cost of robots and the associated expenses for installation, programming, and maintenance. Small and medium-sized enterprises (SMEs) may find it difficult to invest in advanced robotic systems due to budget constraints. Another challenge is the shortage of skilled workforce required to operate and maintain these robots. The integration of robots into existing production lines can also be complex and time-consuming, requiring significant technical expertise. Moreover, the rapid advancements in technology necessitate continuous upgradation and adaptation of robotic systems, posing a challenge for manufacturers to keep up with the latest developments.

Major Players in the Industrial Robots Market


1. ABB Ltd.
2. FANUC Corporation
3. KUKA AG
4. Yaskawa Electric Corporation
5. Mitsubishi Electric Corporation
6. Kawasaki Heavy Industries, Ltd.
7. DENSO Corporation
8. Omron Corporation
9. Epson Robots
10. Staubli International AG
11. Universal Robots A/S
12. Nachi-Fujikoshi Corp.
13. Comau SpA
14. Toshiba Machine Co., Ltd.
15. Rockwell Automation, Inc.

Market Segmentation


  • By Type:
  • Articulated Robots
  • SCARA Robots
  • Parallel Robots
  • Cylindrical Robots
  • Cartesian Robots
  • By End User:
  • Automotive
  • Electronics
  • Metal & Machinery
  • Plastics & Chemicals
  • Food & Beverages
  • Others
  • By Region:
  • North America
  • Europe
  • Asia-Pacific
  • Latin America
  • Middle East & Africa

Please fill in the form to receive the detailed Table of Contents

Get Free Sample

At OG Analysis, we understand the importance of informed decision-making in today's dynamic business landscape. To help you experience the depth and quality of our market research reports, we offer complimentary samples tailored to your specific needs.

Start Now! Please fill the form below for your free sample.

Why Request a Free Sample?

Evaluate Our Expertise: Our reports are crafted by industry experts and seasoned analysts. Requesting a sample allows you to assess the depth of research and the caliber of insights we provide.

Tailored to Your Needs: Let us know your industry, market segment, or specific topic of interest. Our free samples are customized to ensure relevance to your business objectives.

Witness Actionable Insights: See firsthand how our reports go beyond data, offering actionable insights and strategic recommendations that can drive your business forward.

Embark on your journey towards strategic decision-making by requesting a free sample from OG Analysis. Experience the caliber of insights that can transform the way you approach your business challenges.

You can purchase individual sections of this report. Explore pricing options for specific sections.

FAQ's

The Global Industrial Robots Market is estimated to generate USD 23.7 billion in revenue in 2024.

The Global Industrial Robots Market is expected to grow at a Compound Annual Growth Rate (CAGR) of 13.8% during the forecast period from 2025 to 2032.

The Industrial Robots Market is estimated to reach USD 66.7 billion by 2032.

License

Didn’t find what you’re looking for? TALK TO OUR ANALYST TEAM

Need something within your budget? NO WORRIES! WE GOT YOU COVERED!

Related Products

Central Emergency Lighting Inverter Market Analysis and Outlook Report: Industry Size, Share, Growth Trends, and Forecast (2025-2034)

The Central Emergency Lighting Inverter Market is a key component of the global emergency lighting and power backup infrastructure. Central emergency lighting inverters are designed to provide uninterrupted power to critical emergency lighting systems during power outages, ensuring safety and visibility in commercial buildings, healthcare facilities, educational institutions, data centers, and industrial plants. Unlike distributed battery units, these centralized systems support multiple lighting circuits from a single point, improving maintenance efficiency and regulatory compliance. As building codes and fire safety regulations become more stringent across developed and emerging markets, demand for reliable, high-efficiency inverters is accelerating. Additionally, the global push for energy efficiency and building automation is driving integration of smart inverter systems that allow for real-time monitoring, self-testing, and remote diagnostics. While North America and Europe lead in terms of regulatory-driven installations, the Asia-Pacific region is experiencing rapid market growth due to urbanization, infrastructure development, and expansion of high-rise commercial properties. In 2024, the Central Emergency Lighting Inverter Market witnessed significant growth, propelled by increased infrastructure development and adoption of advanced safety standards. Key developments included the rollout of next-generation inverters with improved power efficiency, digital controls, and enhanced compatibility with LED lighting systems. Manufacturers focused on compact designs, modular configurations, and user-friendly interfaces, making installation and maintenance easier in both retrofit and new construction scenarios. The commercial and healthcare sectors led adoption, driven by compliance with NFPA 101, IEC 60598, and other international standards. Furthermore, demand increased for centralized inverters with advanced battery management systems (BMS), offering enhanced backup reliability and longer battery life. Integration with building management systems (BMS) and smart grid infrastructure allowed facility managers to monitor inverter performance in real time, triggering preventive maintenance alerts and ensuring code compliance. The Asia-Pacific region, particularly India, China, and Southeast Asia, recorded strong market expansion due to large-scale urban projects and evolving fire safety regulations. From 2025 onwards, the Central Emergency Lighting Inverter Market is expected to expand steadily, driven by smart city developments, digital infrastructure growth, and stricter global fire and safety codes. Technological advancements will focus on cloud-integrated inverters with IoT-enabled diagnostics, automated testing, and predictive maintenance capabilities. Energy storage innovations, such as lithium-ion and solid-state batteries, will replace older VRLA and Ni-Cd battery technologies, offering longer life, faster charging, and better environmental compliance. Demand for sustainable and energy-efficient systems will grow, especially in LEED-certified and green buildings. Additionally, central inverters will increasingly support dual-purpose applications—serving both emergency and task lighting—further optimizing energy use. Emerging markets in Latin America, Africa, and the Middle East are expected to present strong opportunities due to ongoing investments in commercial real estate, public infrastructure, and smart energy systems. Manufacturers will also prioritize modular, scalable systems to meet diverse project requirements in retrofits and large-scale developments.Key Market Trends, Drivers and Challenges Integration with Smart Building Systems: Central emergency inverters are increasingly integrated with BMS and IoT platforms, enabling real-time performance monitoring and automated compliance testing. Shift Toward Lithium-Ion Battery Systems: Lithium-ion and next-generation energy storage technologies are gaining traction for their efficiency, lifespan, and environmental advantages. Compact and Modular Designs: Growing demand for space-saving, scalable inverter units makes modular central inverters ideal for retrofits and high-density urban applications. Stringent Fire and Life Safety Regulations: Compliance with global building codes and safety standards drives the adoption of centralized emergency lighting systems in commercial and public buildings. Growth in Smart and Green Buildings: Increased construction of smart, energy-efficient, and sustainable buildings necessitates reliable, integrated emergency power solutions. Urbanization and Infrastructure Development: Rapid urban growth and investments in transport, healthcare, and commercial infrastructure boost demand for centralized lighting backup systems. High Initial Investment and Installation Costs: Central inverters typically require significant upfront investment and planning, which can limit adoption in small to mid-sized projects. Compatibility with Legacy Lighting Systems: Retrofitting central inverters into older buildings with outdated lighting systems poses integration challenges and may require costly upgrades. Report Scope Parameter Detail Base Year 2024 Estimated Year 2025 Forecast Period 2026-2034 Market Size-Units USD billion Market Splits Covered By Product, By Application, By End User and By Technology Countries Covered North America (USA, Canada, Mexico) Europe (Germany, UK, France, Spain, Italy, Rest of Europe) Asia-Pacific (China, India, Japan, Australia, Rest of APAC) The Middle East and Africa (Middle East, Africa) South and Central America (Brazil, Argentina, Rest of SCA) Analysis Covered Latest Trends, Driving Factors, Challenges, Supply-Chain Analysis, Competitive Landscape, Company Strategies Customization 10 % free customization (up to 10 analyst hours) to modify segments, geographies, and companies analyzed Post-Sale Support 4 analyst hours, available up to 4 weeks Delivery Format The Latest Updated PDF and Excel Datafile

Published:Jun-2025

Modular IPC Market Analysis and Outlook Report: Industry Size, Share, Growth Trends, and Forecast (2025-2034)

The Modular IPC (Industrial PC) market is gaining strong traction as industries increasingly demand flexible, high-performance computing platforms for automation, control, and edge processing. Modular IPCs offer scalable configurations—incorporating compute modules, I/O blocks, and communication interfaces within rugged enclosures—enabling rapid customization for factory floors, robotics, and harsh environments. With rising adoption of Industry 4.0, smart manufacturing, and edge analytics, operators are shifting toward modular systems that are serviceable on-site, upgradeable in field, and tailored to specific machine or process tasks. Growing complexity in automation workflows, coupled with rising integration of AI, machine learning, and real-time monitoring, is fuelling demand for versatile IPC frameworks. Modular units support hot-swappable compute or I/O cards, enhanced thermal management, and standard interface interoperability. Vendors provide pre-certified blocks (e.g., safety, vision, motion), reducing integration time and compliance effort. Meanwhile, remote management, predictive diagnostics, and edge orchestration capabilities enhance uptime and reduce deployment risk. The modular IPC market is emerging as the backbone of agile, scalable industrial architectures that combine compute power, interoperability, and lifecycle adaptability. Key Takeaways Modular IPCs offer rapid adaptability: users can interchange processing modules, I/O cards, or communication interfaces without forklift upgrades, enabling quick repurposing across machines or production lines. Ruggedized designs deliver industrial-grade reliability, with sealed enclosures, extended-temperature components, and vibration-resistant modules suitable for factory, outdoor, and mobile deployment environments. Edge computing capability allows real-time processing close to the source, minimizing latency, enabling AI inference, predictive control, and process feedback without transferring data to remote servers. Hot-swappable modules—like GPU compute, vision I/O, or fieldbus cards—support fast maintenance, field upgrades, and hardware scaling without full system shutdown or reopening enclosures. Standardized module architectures (e.g., CompactPCI, COM Express, custom backplanes) simplify vendor interchangeability and ensure compatibility with off-the-shelf expansion cards for vision, safety, or motion control. Embedded diagnostics and remote access enable predictive maintenance, performance monitoring, and firmware updates, reducing field service visits and preventing downtime across distributed installations. Industrial cybersecurity features—such as TPM modules, encrypted boot, and secure network bridges—protect critical edge systems and support compliance in regulated sectors like energy, manufacturing, and defense. Energy-efficient design with intelligent thermal modes and power-sensing modules supports deployment in power-constrained or off-grid applications like autonomous vehicles or remote utilities. OEM and systems integrator partnerships deliver pre-certified modules combining compute, vision, and safety functions, reducing integration risk and accelerating compliance with industrial standards. Lifecycle support strategies include module-by-module replacement, firmware updates, and field service warranties, enabling long-term product longevity and reducing e-waste in industrial automation environments. North America – Modular IPC Market: Modular IPC Market in North America is driven by automation trends in manufacturing, transportation, and energy sectors. Companies demand scalable, rugged IPC components that support rapid system integration and field upgrades. Flexibility and fanless operation are important in hybrid on-site environments. Providers offering modular customization, real-time monitoring, and full technical support ensure strong customer confidence. Compliance with industrial safety standards and interoperability with automation platforms are key decision factors. Asia Pacific – Modular IPC Market: Asia Pacific’s Modular IPC Market expands rapidly alongside industrial digitization and smart factory initiatives. Clients prefer cost-effective modular architectures that can be assembled locally and scaled with production needs. Support for local language software and climate-resistant hardware is critical. After-sales training and service center accessibility significantly impact adoption. Demand is rising from sectors such as automotive assembly, logistics, and process industries. Europe – Modular IPC Market: Modular IPC Market in Europe emphasizes high reliability, functional safety, and durability for industries like automotive, aerospace, and pharmaceuticals. Buyers require certified fanless IPC modules compliant with rigorous safety and electromagnetic standards. Integration with Industry 4.0 systems, edge analytics, and OPC-UA frameworks is essential. Retrofit-ready, field-reconfigurable systems support modernization of older plants. Vendors providing lifecycle service, software updates, and spare-part backup strengthen their market position. Report Scope Parameter Detail Base Year 2024 Estimated Year 2025 Forecast Period 2026-2032 Market Size-Units USD billion Market Splits Covered By Product Type, By Application, By End User, By Technology, By Distribution Channel Countries Covered North America (USA, Canada, Mexico) Europe (Germany, UK, France, Spain, Italy, Rest of Europe) Asia-Pacific (China, India, Japan, Australia, Rest of APAC) The Middle East and Africa (Middle East, Africa) South and Central America (Brazil, Argentina, Rest of SCA) Analysis Covered Latest Trends, Driving Factors, Challenges, Trade Analysis, Price Analysis, Supply-Chain Analysis, Competitive Landscape, Company Strategies Customization 10% free customization (up to 10 analyst hours) to modify segments, geographies, and companies analysed Post-Sale Support 4 analyst hours, available up to 4 weeks Delivery Format The Latest Updated PDF and Excel Data file

Published:May-2025

Global Copper Scrap Market Outlook Report: Latest Trends and Growth Opportunities by Region

"Sustainability and Circular Economy Drive Copper Scrap Market Growth: A Look at Key Trends and Future Opportunities" Market Introduction and Overview T The Copper Scrap Market is expanding as industries worldwide prioritize resource efficiency, cost control, and sustainable practices. Copper scrap—collected from decommissioned electrical wiring, plumbing, vehicles, and electronics—serves as a reliable and high-quality alternative to newly mined copper, given copper’s ability to retain its physical and chemical properties through multiple recycling cycles. The energy required to recycle copper is much lower than that needed for primary production, which helps manufacturers reduce their environmental impact. Increased focus on electrification, renewable energy, and green construction is driving the use of copper in new infrastructure, while also generating more scrap for recycling as old systems are replaced. The market is influenced by technological advances in automated sorting, shredding, and refining, which improve both the efficiency and quality of recycled copper. Regional trends show Asia-Pacific as a major consumer and recycler, while North America and Europe benefit from well-established collection and processing networks. Supply and demand are closely linked to copper prices; when prices are high, scrap collection and recycling become more profitable, stimulating activity across the value chain. Meanwhile, investments in modern recycling facilities and stronger collaborations between metal producers, recyclers, and OEMs are making the supply of recycled copper more stable and responsive to changing industrial needs. Regulatory initiatives around circular economy principles and responsible sourcing further support growth in the copper scrap market. Key Takeaways Copper scrap maintains its quality and can be recycled indefinitely, providing an environmentally friendly alternative to primary copper for manufacturers in electrical, automotive, and construction sectors. Modern sorting and processing technologies—such as robotics and sensor-based systems—help increase recovery rates, ensure high purity, and lower operating costs for recyclers. Fluctuating copper prices impact the economics of scrap collection and recycling, with higher prices encouraging greater recovery and lower prices potentially reducing collection efforts. Growth in renewable energy, electric vehicles, and electronics increases both the demand for copper and the supply of post-consumer scrap as older systems are phased out. Asia-Pacific leads in copper scrap consumption and processing, supported by robust manufacturing and infrastructure development, while North America and Europe continue to invest in efficient recycling systems. Major metals companies are expanding their recycling capabilities to secure stable feedstock, manage supply chain risks, and offer sustainable materials to customers. Regulations supporting circular economy practices are encouraging traceability, responsible sourcing, and modernization of scrap collection and processing facilities. A diverse mix of scrap sources—including wire, tubing, and electronic components—broadens market opportunities and enables recyclers to capture value from multiple waste streams. Closer collaboration between product designers, manufacturers, and recyclers is making products easier to dismantle and recycle at end-of-life, improving material recovery rates. Future demand for copper scrap will be sustained by large-scale infrastructure projects, ongoing electrification trends, and upgrades in telecommunications and data center networks. Competitive Landscape and Key Strategies The competitive landscape of the Copper Scrap Market is highly fragmented, with a mix of global players and regional recyclers. Leading companies are focusing on expanding their recycling capacity and investing in advanced technologies to improve the efficiency of their operations. Key strategies include vertical integration, where companies control both the collection of copper scrap and the production of recycled copper, ensuring a steady supply of high-quality material. Many companies are also forming partnerships with industries that generate large volumes of scrap, such as construction and electronics, to secure a reliable feedstock for their recycling operations. In addition to technological innovation, sustainability is a major focus for companies in the copper scrap market. Leading players are emphasizing their environmental contributions, highlighting the carbon savings and resource conservation associated with copper recycling. This aligns with the growing demand for sustainable materials from industries such as automotive and electronics, which are under pressure to reduce their environmental impact. By positioning themselves as leaders in the circular economy, top players are strengthening their competitive advantage and capturing a larger share of the growing copper scrap market. Market Players 1. Aurubis AG 2. Sims Metal Management Ltd. 3. Chiho Environmental Group 4. European Metal Recycling (EMR) 5. OmniSource LLC 6. Kuusakoski Group Oy 7. Dowa Holdings Co., Ltd. 8. Commercial Metals Company 9. TSR Recycling GmbH & Co. KG 10. Global Metals Holdings Ltd. 11. American Iron & Metal (AIM) Group 12. SA Recycling LLC 13. Reukema Recycling 14. Mallin Companies 15. Schnitzer Steel Industries, Inc.

Published:Jan-2025